52 Software Engineering M.S. University - D.D.C.E.

3.6.3 Software Risk Management Steps and Techniques

o iver sy
R e ~driver an
Risk idendification Assurnption 3n3§s¢'g&s
Decomposition
Performance models
_ Cost models
- Risk assessment —Hisk analysis Network analysis
E Degcision analysis
-y Quatity-factor analysis
isk exposure
| ... Risk prioeitisatio A——E Risk.lm?o)
Risk management -~ Sl &E::ing infarmation
Risk avoidance
: Risk transfer
r—-Rak-management planning Risk reduction
* Risk-etement planning
Risk-plan integrafion
Pr o€ s
"~ Risk contro| ———————Risk resolution e Seee
Analyses _
ng ;: Miestone fracking
7 : Tog 10 fracking
L Risk monitoring I: Risk reassessment
Corrective action

Figure 3.8: Software Risk Management Steps and Techniques
Risk Identification

Risk identification is used in risk management to answer the questions: What can happen? How can it
happen? Risk identification is the process of recognizing the opportunities opened up by each activity
or phase of the project and clarifying where the risk lies. The agreed tolerance of risk should help
identify the amount of time should be spent in identifying risk, but, at least the 20% of the risks that
would have 80% of the potential impact should be identified. There are many techniques to aid in risk
identification and they generally fall under the heading of either quantitative or qualitative risk
identification techniques.

Following are the main qualitative techniques of Risk Identification
e Assumptions Analysis

e Check Lists

e Prompt Lists

e Brainstorming

e Facilitated workshops

o Interviews

Assumptions Analysis

It is evitable that when you start planning or outlining your project you will be making assumptions.
Making assumptions within a project will always creare risks and a way to help manage this is to list all
the assumptions of each phase or stage of your project against a timeline. Then think about the

M.S. University - D.D.C.E. Software Project Planning 53

consequence of the assumptions and how they affect the other parts of the project. Try creating a high
level storyboard of the project showing risk and assumptions are associated, this can show the effect of
decisions and should provide a better understanding about the risks in a program or project.

Check Lists

Risk checklists are often built upon a Project or Program Managers past experience or the Project
Management experience of an organization. They will normally take into account

¢ Quality experience

e Formality of development
e Novelty of application
e Impact on business

e . Requirements standards
o Software identification
e Projects concurrency

o Dependencies

e Project duration

o Flexibility of delivery

¢ Planning estimates

e Stability of suppliers

e Range of sites

e Impact upon status quo
Prompt Lists

Risks here will be identified by logical examination of each Program or Project aspect. Following is a
list of common areas from which risk can arise.

Brainstorming or SWOT Analysis

Within SWOT analysis risks are identified by looking at the Strengths (or perceived Strength),
Weakness, Opportunity & Threats to the success of the project or program. This is usually done
within a Workshop environment.

Facilitated Workshops

Within SWOT - analysis risks are identified by looking at the Strengths (or perceived Strength),
Weakness, Opportunity & Threats to the success of the project or program. This is usually done
within a Workshop environment.

Interviews
Interviews conducted to identify risk will only be successful where there is:
e Good preparation;

e Clear objectives;

54 Software Engineering

M.S. University - D.D.C.E.

e A positive & supportive environment;

e Proper time management;

e Use of open questions;

e Challenging not confrontational atmosphere.

The results of interviews should be well documented.

External

Infrastructure Relating to infrastructures such as computer networks, transport systems
for staff, power supply systems

Economic Relating to economic factors such as interest rates, exchange rates,

inflation

Legal & Regulatory

Relating to the laws and regulations which if complied with should
reduce hazards (E.g. - Health and Sofety ot Work Act)

Environmental

Relating to issues such as fuel consumption, pollution

Political Relating to possible political constraints such as a change of governm ent
Market Relating to issues such as competition and supply of goods

Act of God Relating to issues such as fire, flood earthquake

Financial

Budgetary Relating fo the availability of resources or the allocation of resources
Fraud or Theft Relating to the unproductive loss of resources

Insurable Relating to the potential areas of loss which can be insured against
Capital Investment Relating to the making of appropriate investment decisions

Liability Relating to the right to sue or be sued in certain circumstances
Activity

Policy Relating to the appropriateness and quality of policy decisions
Operational Relating to the procedures employed o achieve particular objectives
Information Relating to the adequacy of information which is used for decision

making

Reputational

Relating to the public reputation of the organisation and consequent
effects

Transferable

Relating to risks which can be transferred or the transfer of risks at
inappropriate cost

Technological

Relating to the use of technology to achieve objectives

Project Relating to project planning and management procedures
Innovation Relating to the exploitation of opportunities to make gains
Human Resources

Personnel Relating to the availability and retention of staff

Health and Safety

Relating to the well-being of people

Quantitative Risk Management Techniques

There are three main quantitative techniques;

e Decision trees
e Influence diagrams

e Monte Carlo Simulation

Decision Trees

Rather like flowchart diagrams these represent a method of looking at, for example, two options and
making a decision. By analyzing the impact each decision will have, the risks of taking that decision

M.S. University - D.D.C.E. Software Project Planning 55

can be forecast and used to anticipate problems or inform the direction the project takes. This
technique is best suited to simpler situations. In complex scenarios they can become confusing and
complicated.

Influence Diagrams

This technique results in a diagram, which is similar to a project network diagram or Microsoft Project
PERT charts. In this case each box will contain a variable or decision, which will have an influence on
future progress. By analyzing the impact each variable will have, the risks of taking one path over
another can be forecast and used anticipate problems or inform the direction the project takes.

Monte Carlo Simulation (or 3-Point Estimation)

Looking at both best and worse case scenarios as well as most likely scenario and then planning what
the impact of each is. This can be plotted against the Project Baseline and the Critical Path to show the
consequence of risk and allow you to anticipate suitable response to risk.

Risk Estimation

Risk, at the general level, involves two major elements: the occurrence probability of an adverse event
and the consequences of the event. Risk estimation, consequently, is an estimation process, starting
from the occurrence probability and ending at the consequence values.

Risk estimation involves following activities:

e Discussion of source, exposure issues

e Communication of results with stakeholders

e Assess changes in knowledge/perception in light of new information.

During the Risk Estimation step of risk management, the frequency and consequences associated with
each risk scenario are estimated and communicated with stakeholders. Stakeholders may have
important knowledge of sources and patterns of exposure that analysts will need to integrate into a risk
assessment. However conflict is most likely to arise at this step as stakeholders are not typically
involved in the risk estimation process, and the uncertainties and value assumpuons associated with the
methods may not be clearly communicated.

During the Risk Estimation stage, stake holder’s knowledge and perceptions are assessed in light of
receiving new information resulting from the risk estimates and the stakeholder analysis is updated.
Third party review by third party experts and explicit communication of the methods, assumptions
and uncertainties will contribute to credibility and trust in the technical analyses.

Software Estimation Risks

The effects of inaccurate software estimation and schedule overruns are well known. The problem
stems from an inability to accurately assess risks associated with various software development
projects. Software estimation errors generally result from four major risk areas, which are:

1. The inability to accurately size the software project. This results in poor implementations,
emergency staffing, and cost overruns caused by underestimating project needs.

2. The inability to accurately specify a development environment which reflects reality. This results
in defining cost drivers which may be inappropriate, underestimated or overestimated.

56 Software Engineering M.S. University - D.D.C.E.

3. The improper assessment of staff skills. This results in misalignment of skills to tasks and
ultimately miscalculations of schedules and level of effort required, as well as either
underestimating or overestimating project staffing requirements, \

4. The lack of well defined objectives, requirements, and specifications, or unconstrained
requirements growth during the software development life cycle. This results in forever changing
project goals, frustration, customer dissatisfaction, and ultimately, cost overruns.

All potential risks associated with the proposed software development project should be defined and
weighed, and impacts to project cost should be determined. This information should always be
included in the software estimation process.

Risk Exposure

Quantifying the effects of a risk by multiplying the risk impact by the risk probability yields risk
exposure.

Risk-exposure = Risk-impact x Risk-probability

For each risk, the Risk Exposure is defined as the probability of the undesirable outcome times the size
of the loss involved. Risk exposure helps us to list the risks in priority order, with the risks of most
concern given the highest priority. Next, we must take steps to control the risks. The notion of
control acknowledges that we may not be able to eliminate all risks.

Identifying Risk Exposure

It is the responsibility of project manager to ensure that team has an understanding of the project’s
exposure to risk. Gaining this understanding can be achieved through identifying categories of risk and
then answering questions associated with each of these categories. The next section provides project
managers with a set of questions to ask about their projects to help categorize risk.

Risk Categories and Questions

e Business/Strategic

e External Factors

e Procurement

o Organizational Factors

e Management

e Technical

Strategic

1. Do the project objectives fit into the organizations overall business strategy?
When is the project due to deliver?

What would be the result of late delivery?

What would be the result of limited success (functionality)?

oo e

What is the stability of the business area?

M.S. University - D.D.C.E. Software Project Planning 57

External Fastovs

i 8

Is the project exposed to requirements due to international interests (foreign legal implications or
foreign company involvement)

2. Could there be political implications of the project failure?

3. Is this project a part of the larger program? IF so, what constraints are set for the project by the
program?

Procurement

1. Does the supplier have a reputation for delivery of high quality?

2. Is the contract sufficiently derailed to show what the supplier is going to provide?

3. Are the acceptance criteria clear to both the parties?

4. Isthe contract legally binding/enforceable?

Organizational Factors

1. What consideration needs to be given to security of the project?

2. Does the project have wholehearted support from senior management?

3. What is the commitment of the user management?

4. Have training requirements been identified? Can these requirements be met?

Management

1. How clearly are the project objectives defined?

2. Will the project be run using well-documented approach to project management?

3. Does this approach cover aspects of quality management, risk management and development
activities in sufficient depth?

4. How well does the project team understand chosen methodology?

5. What is the current state of project plans?

6. Is the completion of project dependent on completion of other projects?

7. Are the tasks in project plan interdependent?

8. Can a critical path through the project tasks be identified?

9. What is the availability of appropriate resources?

10. What are the skills and experience of project team?

11. Will people be available for training?

12. How many separate users are involved?

13. How much changes will there be for user’s operation or organization?

58 Software Engineering M.S. University - D.D.C.E.

Technical

Is the specification clear, concise accurate and feasible?

How have the technical options been evaluated?

What is the knowledge of equipment (hardware/software)?

Does the experience of project manager cover a similar application?
Is this a new application?

What is the complexity of system?

How many sites will the system are implemented in?

Is the proposed equipment new/leading edge?

B B L gy s g B Ba o=

Who is responsible for defining system testing?

H
o

Who is responsible for defining acceptance testing?

funry
[

. On what basis is the implementation planned?

._\
b

What access will the project team have to development/testing facilities?

—
w

. Will users of data processing staff use the system?

14. Have requirements for long-term operations, maintenance and support been identified?
With risk identified, it is much easier to develop a plan to eliminate or manage risk.

Risk Migration

Risk Migration is the process of reducing risk exposure, either by decreasing the probability of the risk
occurring, or by finding ways to reduce the possible impacr if it does occur.

Risk Management Plans

The Risk Management Plan (RMP) presents the process for implementing proactive risk management
as part of overall project management. The RMP describes techniques for identifying, analyzing,
prioritizing & tracking risks; developing risk-handling methods; & planning for adequate resources to
handle each risk, should they occur. The RMP also assigns specific risk management responsibilities &
describes the documenting, monitoring & reporting processes to be followed.

Purpose

Risk Management Plan defines how risks will be managed during the lifecycle of the program. It is used
to plan the way risks are handled within the program. The Risk Strategy and supporting Plan must
acknowledge actual and potential threats to the successful delivery of a project and determines the
activities required to minimize or eliminate them. The risk plan needs to be capable of integration into
or coordination with the project plan.

M.S. University - D.D.C.E. Software Project Planning 59

Check Your Progress

Discuss the following in brief:
1. Risk Migration.
2. Putnam’s work in Putnam Resource Allocation Model.
3. Steps of Software Estimation.
4. Project Planning Document Structure.
2

Three levels of COCOMO.

3.7 LET US SUM UP

Software project planning plays a very important role in success of any Software implementation
Project Scopes, Estimations, Resources are to be very critically calculated and monitored with the
application of COCOMO model for successfully finishing project in time and in right cost. The
overall process of developing a cost estimate for software is not different from the process for
estimating any other element of cost.

3.8 KEYWORDS

COCOMO: Constructive Cost Model

RPM: Risk Management Plan

CSCI: Computer Software Configuration Item
R& D: Research and Development

DSI: Delivered Source Instructions

LRU: Line Replaceable Unit

3.9 QUESTIONS FOR DISCUSSION

1. Discuss the Putnam Resource Allocation Model.

2. What are the qualitative risk identification techniques?
3. Write briefly about risk estimation.

4. Explain the levels and modes of COCOMO model.

5. What is Cost Estimation?

6

Explain why the process of project planning is an iterative one and why a plan; must be
continually reviewed during a software project.

7. Briefly explain the purpose of each of the sections in a software project plan.

60 Software Engineering M.S. University - D.D.C.E.

Check Your Progress: Model Answers

1. The process of reducing risk exposure.

2. The problem of staffing of software projects.

3. Define Project Objectives and Requirements and plan the Activities.
4

Introduction (goals, constraints, etc.), project organization, risk analysis, hardware and
software resource requirements etc.

5. Basic, intermediate and detailed.

3.10 SUGGESTED READINGS

R.S. Pressman, Software Engineering—A Practitioner’s Approach, (5th edition), Tata McGraw Hill Higher
Education.

Rajib Mall, Fundamentals of Sofiware Engineering, PHI, 2nd Edition.
Sommerville, Software Engineering, Pearson Education, 6th Edition.

Richard Fairpy, Software Engineering Concepts, Tata McGraw Hill, 1997.

B e
LESSON

4

SOFTWARE REQUIREMENT ANALYSIS AND
SPECIFICATIONS

CONTENTS

4.0 Aims and Objectives
4.1 Introduction
42 Software Requirement Analysis
4.2.1 Types of Requirements
422 Goals versus Requirements
4.23 Domain Requirements
424 Tools for Developing System Requirement Document
43 Requirement Engineering
4.4 Problem Analysis
44.1 Coad Object Diagram
4.5 Approaches to Problem Analysis
4.5.1 Structured Requirements Definition (SRD)
4.5.2 Structure Analysis and Design Technique (SADT)
453 Software Prototyping
4.6 Software Requirement Specification (SRS)
4.6.1 Nature of SRS
4.6.2 Roles of SRS
4.6.3 Characteristics of a Good SRS
4.6.4 Organization of the SRS
4.7 Behavioral and Non-behavioral Requirements
4.8 LetusSumup
49 Keywords

4.10 Questions for Discussion

4.11 Suggested Readings

62 Software Engineering M.S. University - D.D.C.E.

4.0 AIMS AND OBJECTIVE

After studying this lesson, you should be able to:

‘o Discuss requirements analysis and engineering

e Explain problem analysis and approaches to problem analysis
o State software requirements specification

e Describe behavioral and non-behavioral requirements

4.1 INTRODUCTION

Software requirements gathering is a crucial step. It decides precisely what is to be built. No other
work is as tough as fixing the detailed technical requirements. It can lead to a crippled system if done
in a wrong manner. It is also difficult to rectify.

o The process of eliciting, analyzing, documenting, and validating the services required of a system
and the constraints under which it will operate and be developed.

e Descriptions of these services and constraints are the requirements for the system.
e Requirements may be high-level and abstract, or detailed and mathematical.

o The hardest single part of building a software system is deciding precisely what to build. No other
part of the conceptual work is as difficult... No other part of the work so cripples the resulting
system if done wrong. No other part is more difficult to rectify later - Fred Brooks, “No Silver
Bullet...”

Why is Requirements Engineering so bard?

e Difficulty of anticipation.

e Unknown or conflicting requirements/priorities.
e Conflicts between users and procurers.

e Fragmented nature of requirements.

o Complexity/number of distinct requirements.
Some Analogies

e Working a dynamically changing jigsaw puzzle.
e Blind men describing an elephant.

e Different medical specialists describing an ill patient.

4.2 SOFTWARE REQUIREMENT ANALYSIS

4.2.1 Types of Requirements

e Requirements range from being high-level and abstract to detailed and mathematical.

M.S. University - D.D.C.E. Software Requirement Analysis and Specifications 63

This is inevitable as requirements may serve multiple uses.

e

+ May be the basis for a bid for a contract — must be open to interpretation.
"

% May be the basis for the contract itself — must be defined in detail.

% May be the basis for design and implementation - must bridge requirements.

Engineering and Design Adtitities

LUker requirements: Statements in natural language plus diagrams of system services and constraints.
Written primarily for customers.

System requirements: Structured document setting out detailed descriptions of services and
constraints precisely. May serve as a contract between client and developer.

Software design spedification: Implementation oriented abstract description of software design,
which may utilize formal (mathematical) notations. Written for developers.

Functional and Non-functional Requirements

Functional requirements — services the system should provide, how it should react to particular
inputs, or how it should behave in particular situations.

Non-functional requirements — constraints on services or functions (e.g., response time) or
constraints on development process (e.g., use of a particular CASE toolset).

Domain requirements — functional or non-functional requirements derived from application
domain (e.g., legal requirements or physical laws

Examples of Functional Requirements

The user shall be able to search either all of the initial set of databases or select a subset from it.

The system shall provide appropriate viewers for the user to read documents in the document
store.

Every order shall be allocated a unique identifier (ORDER_ID), which the user-shall be able to

copy to the account’s permanent storage area

Non-functional Requirements

Define system attributes (e.g., reliability, response time) and constraints (e.g., MTTF5K >
transactions, response time < 2 seconds).

Attributes are often emergent system properties - i.e., only observable when the entire system 1s
operational.

Process conmstraints may mandate a particular CASE system, programming language, or
development method.

Non-functional requirements may be more critical than functional requirements. If not met, the
system may be useless.

Non-functional Classifications

Product requirements: Specify product behavior

64 Software Engineering M.S. University - D.D.C.E.
» Organizational requirements: Derived from policies/procedures in customer’s or developer’s
organization (e.g., process constraints)

* External requirements: Derived from factors external to the product and its development process
(e-.g., interoperability requirements, legislative requirements)

Examples

Product Requirement

e It shall be possible for all necessary communication between the APSE and the user
e To be expressed in the standard Ada character set.

Organizational Requirement

e The system élevelopment process and deliverable documents shall conform to the process and
deliverables defined in XYZCo-SP-STAN-95.

External Requirement

» The system shall not disclose any personal information about customers apart from their name
and reference number to the operators of the system.

Non-functional
requirements

Organizational

Product

External

requirements requirements

requir ements

Interoperability
requirements

Ethical
requirements

Efficiency
requirements

Reliability
requirements

Portability
requirements

sab ity Delivery Implementation Standards Legislative
equirements requirements requirements requirements requirements
Performance Space Privacy Safety
requirements requirements requirements requirements

4.2.2 Goals versus Requirements

General goals such as “system should be user friendly” or “system should have fast response time” are
not verifiable.

Goals should be translated into quantitative requirements that can be objectively tested.

M.S. University - D.D.C.E. Software Requirement Analysis and Specifications 65

Examples

o A system goal: The system should be easy to use by experienced controllers and should be
organized in such a way that user errors are minimized.

o A erifiable non-functional requirement: Experienced controllers shall be able to use all the system
functions after a total of two hours training. After this training, the average number of errors
made by experienced users shall not exceed two per day.

Reguirements Measures
Property Measure
Speed Processed transactions/second
User/Event response time
Screen refresh time
Size , K Bytes
Number of RAM chips
Ease of use Training time
Number of help frames
Reliability Mean time to failure
Probability of unavailability
Rate of failure occurrence
Availability
Robustness Time to restart after failure
Percentage of events causing failure
Probability of data corruption on failure
Portability Percentage of target dependent statements
Number of target systems

Requirement Interactions

Competing/conflicting requirements are common with complex systems. Spacecraft system example:
o To minimize weight, the number of chips in the unit should be minimized.

e To minimize power consumption, low-power chips should be used.

e Bur using low-power chips means that more chips have to be used. Which is the most critical
requirement?

For this reason, preferred points in the solution space should be identified.

4.2.3 Domain Requirements

e Derived from the application domain rather than user needs.

s May be new functional requirements or constraints on existing requirements.

e If domain requirements are not satisfied, the system may be unworkable.

Library System Domain Requirements

There shall be a standard user interface to all databases, which shall be based on the Z39.50 standard.

Because of copyright restrictions, some documents must be deleted immediately on arrival. Depending
on the user’s requirements, these documents will either be printed locally on the system server for .
manually forwarding to the user or routed to a network printer.

66 Software Engineering M.S. University - D.D.C.E.

Domain Requirements Problems

o Understandability: Requirements are expressed in the language of the application domain and may
not be understood by software engineers.

» Implicitness: Domain experts may not communicate such requirements because they are so
obvious (to the experts).

- User requirements “should”

¢ Should be understandable by system users who don’t have detailed technical knowledge.
o Should only specify external system behavior. '

» Should be written using natural language, forms, and simple intuitive diagrams.

Some potential problems with using natural language:

o Lack of darity - expressing requirements precisely is difficult without making the document
wordy and difficult to read.

* Requirements confusion - functions, constraints, goals, and design info may not be clearly
distinguished.

* Requirements amalgamation - several different requirements may be lumped together.-
Guidelines for Writing User Requirements
¢ Adopt a standard format and use it for all requirements.

* Use language in a consistent way. E.g., use shall for mandatory requirements, should for desirable
requirements. '

* Use text highlighting to identify key parts of the requirement.
e Avoid the use of computer jargon.

System Requirements

e More detailed descriptions of user requirements

e May serve as the basis for a contract

e Starting point for system design & implementation

* May utilize different system models such as object or dataflow
System Requirements and Design Information

* In principle, system requirements should state what the system should do, and not how it should
be designed.

* In practice, however, some design info may be incorporated, since:
* Sub-systems may be defined to help structure the requirements.
* Interoperability requirements may constrain the design.

o Use of a specific design model may be a requirement

M.S. University - D.D.C.E. Software Requirement Analysis and Specifications 67

More Potential Problems with using Natural Language

Ambiguity: The readers and writers of a requirement must interpret the same words in the same
way. NL is naturally ambiguous so this is very difficult.

Over-flexibility: The same requirement may be stated in a number of different ways. The reader
must determine when requirements are the same and when they are different.

Lacks of modularization: NL structures are inadequate to structure system requirements
sufficiently.

Requirements Document Requirements

e Specify external system behavior

¢ Specify implementation constraints

e Easy to change ()

e Serve as reference tool for maintenance

* Record forethought about the life cycle of the system i.e. predict changes
o Characterize responses to unexpected events
IEEE Requirements Standard

¢ Introduction

e General description

e Specific requirements

e Appendices

e Index

This is a generic structure that must be instantiated for specific systems

Requirements Document Structure

Preface (readers, version, change history)
Introduction

Glossary

User requirements definition

System requirements specification
System models

System evolution

Appendices

Index

68 Software Engineering M.S. University - D.D.C.E.

4.2.4 Tools for Developing System Requirement Documents
Data Flow Diagram (DFD)

A data flow diagram (DFD) is a graphical representation of the "flow" of data through an information
system. It differs from the system flowchart as it shows the flow of data through processes instead of
hardware.

A data flow diagram can also be used for the visualization of data processing (structured design).

It is common practice for a designer to draw a context-level Data flow diagram first which shows the
interaction between the system and outside entities. The DFD is designed to show how a system is
divided into smaller portions and to highlight the flow of data between those parts. This context-level
Data flow diagram is then "exploded" to show more detail of the system being modeled.

Data flow diagrams were invented by Larry Constantine, the original developer of structured design,
based on Martin and Estrin's "data flow graph" model of computation.

Data Flow Diagrams (DFDs) are one of the three essential perspectives of Structured Systems Analysis
and Design Method SSADM. The sponsor of a project and the end users will need to be briefed and
consulted throughout all stages of a system's evolution. With a dataflow diagram, users are able to
visualize how the system will operate, what the system will accomplish, and how the system will be
implemented. The old system's dataflow diagrams can be drawn up and compared with the new
system's dataflow diagrams to draw comparisons to implement a more efficient system. Dataflow
diagrams can be used to provide the end user with a physical idea of where the data they input
ultimately has an effect upon the structure of the whole system from order to dispatch to restock.
How any system is developed can be determined through a dataflow diagram.

Developing a Data flow diagram helps in identifying the transaction data in the data model.

There are different notations to draw data flow diagrams, defining different visual representations for
processes, data-stores, dataflow, and external entities.

Let us see the concept of DFD through a usage scenario, in this case the use case logic described in the
Enroll in University system use case. On actual projects it’s far more common just to stand at a
whiteboard with one or more project stakeholders and simply sketch as ‘we talk through a problem.

In this case start with the applicant, the external entity in the top left corner, and simply followed the
flow of data throughout the system. Now introduce the Inspect Forms process to encapsulate the
initial validation steps. Again assign this process identifier 1.0, indicating that it’s the first process one
the top level diagram. A common technique with DFDs is to create detailed diagrams for each process
to depict more granular levels of processing. Were to do this for this process, lets put number the
subprocesses 1.1, 1.2, and so on. Subprocesses of 1.1 would be numbered 1.1.1, 1.1.2, and so on. At this
stage we shouldn’t bother to expand this process to more detailed DFD as it is fairly clear what is
happening in it and therefore the new diagram wouldn’t add any value. The diagram also indicates
who/what does the work in the bottom section of the process bubble, in this case the registrar. This
information is optional although very useful in our experience. One can see how the improperly filled
out forms are returned to the applicant if required.

Then continue to follow the logic of the use case, concentrating on how the data is processed by each
step. The second process encapsulates the logic for creating a student record, including the act of
checking to see it the person is eligible to enroll as well as if they’re already in the database. Notice

M.S. University - D.D.C.E.

how each data flow on the diagram has been labeled. Also notice that the names of the data change to

reflect how it’s been processed.

Software Requirement Analysis and Specifications 69

Forms
. » 1.0
Applicant Inspect Forms
Improperly filled Registrar
A oyljtanns Validated
Forms
2.0
Input Student
Information Sfudenr‘r p-| D1 | Student DB
Information
Registrar
Student
Record
Seminar Section 3.0 Sebadils
| Enrollin — »
Seminars | D2 | Seminar Schedule
Rei Enroliments
egistrar
Seminar
List
Fees
o I——_ 03 | Financiol DB
Receipt Collect Transactions 1
Fees
Registrar > | D4 | Cash Drawer
ayments

Now look closely at the diagram the arrow between the Input Student Information process and the
Student DB data store should be two-way because this process searches the database for existing
student records. Unfortunately I've erased this diagram from my whiteboard so it isn’t easy to address
this minor problem. Yes, I could use a drawing program to update the arrowhead but its more
important to make the point that agile models don’t need to be perfect, they just need to be good
enough. AM recommends that you follow the practice Update Models Only When it Hurts and in this
case this issue doesn’t hurt enough to invest the two or three minutes it would take to fix the diagram.

The Collect Fees process is interesting because it interacts with an electronic data store, Financial DB,
as well as a physical one, Cash Drawer. DFDs can be used to model processes that are purely physical,
purely electronic, or more commonly a mix of both. Electronic data stores can be modeled via data
models, particularly if they represent a relational database. Physical data stores are typically self
explanatory.

There are several common modeling rules that to be followed while creating DFDs:
o All processes must have at least one data flow in and one data flow out.
e All processes should modify the incoming data, producing new forms of outgoing data.

e FEach data store must be involved with at least one data flow.

70 Software Engineering M.S. University - D.D.C.E.

e Each external entity must be involved with at least one data flow.
* A data flow must be attached to at least one process.

Although many traditional methods have a tendency to apply DFDs in dysfunctional ways it is still
possible to do so in an agile manner as well. Keep your diagrams small, as the above example says. Use
simple tools, such as whiteboards, to create them with your stakeholders. Travel light and erase them
when you’re through with them. Create them if they’re going to add value, not simply because your
process tells you to do so. The bottom line is that some of the modeling methodologies may have been
flawed but the need to represent the data flow within a system 1s still required.

Deeloping a Data Flow Diagram

Elements of a data flow diagram: There are three key elements in a Data Flow diagram; Processes, Data
Flows, Data Stores & External entities and each element is drawn differently. Another important
element which is typically marked with dashed lines is Feedback and Control Data.

Process Entity

The "Process entity" identifies a process taking place, it must have at least one input and output. A
process with no input is known as a "miracle process” and one with no output is a "black hole
process”. Both "miracle” and "black hole" processes are strong indicators that the DFD is missing a
connection between processes and should be re-evaluated. Each process has the following:

¢ A Number

e A Name (verb phrase)
e A Description

e At least one input

e At least one output

e Data flow entity

The "Data Flow entity" identifies the flow of data between processes, data stores & external entities, A
data flow cannot connect an external entity to a data source; at least one connection must be with a
process. There are also "physical” flows, i.e. those that use a physical medium, like a membership card.
Each data flow has the following:

e A Name (Noun)

e A Description

e One or more connections to a process.
Data Store Entity

The "Data Store entity" identifies stores of data, both manual and electronic. Electronic or "digital"
stores are identified by the letter D, and manual filing systems by the letter M, e.g. D1 could be a
MySQL database, and M4 could be a filing cabinet. Each data store has the following:

¢ A Number
e A Name

M.S. University - D.D.C.E. Software Requirement Analysis and Specifications 71

e A Description
e One or more input data flows.
¢ One or more output data flows.

External Entity

The "External Entity" identifies external entities which interacts with the system, usually clients but
can be within the same organization. Examples of an external entity include customers, suppliers,
management, certification agencies and competitors. Multiple existences of the same entity, e.g. the
same doctor shown twice on the same diagram, can be identified by a horizontal line in the top left
corner of the symbol. Each external entity has the following:

A Name (Noun)
A Description
The Feedback and Control data

The "Feedback and Control data" identifies a special purpose. Only the first four elements are needed
to create a data flow diagram (DFD).

Top-Down Approach

The system designer makes "a context level DFD", which shows the "interaction" (data flows) between
"the system" (represented by one process) and "the system environment" (represented by terminators).

The system is "decomposed in lower level DFD (Zero)" into a set of "processes, data stores, and the
b np P
data flows between these processes and data stores".

Each process is then decomposed into an "even lower level diagram containing its sub-processes".

This approach "then continues on the subsequent sub-processes”, until a necessary and sufficient level
of detail is reached which is called the primitive process (chewable in one bite).

Event Partitioning Approach

This approach was described by Edward Yourdon in Just Enough Structured Aralysis.
Construct detailed Data flow diagram.

The list of all events is made.

For each event a process is constructed.

Each process is linked (with incoming data flows) directly with other processes or via data-stores, so
that it has enough information to respond to a given event.

The reaction of each process to a given event is modeled by an outgoing data flow.
Data Flow Diagram Lezels
Context Level

This level shows the overall context of the system and it's operating environment and shows the whole
Y P g]
system as just one process. It does not usually show data stores, unless they are "owned" by external

72 Software Engineering M.S. University - D.D.C.E.

systems, e.g. are accessed by but not maintained by this system, however, these are often shown as
external entities.

Enquiry ltems
/ /\-xf\visonplay.com”/\\
Order
_\ System
\\/r \\/
Sreler Invoice

Figure 4.1: A context level Data flow diagram created using Select SSADM
Level 0

This level shows all processes at the first level of numbering, data stores, external entities and the data
flows between them. The purpose of this level is to show the major high level processes of the system
and their interrelation. A process model will have one, and only one, level 0 diagram. A level 0
diagram must be balanced with its parent context level diagram, i.e. there must be the same external
entities and the same data flows, these can be broken down to more detail in the level 0, e.g. the
"enquiry” data flow could be spilt into "enquiry request” and "enquiry results" and still be valid.

3

-« — Enquiry—s| Process
Enquiry

»

Item
Information

“ustomers Item
e

Customer Item details /

Details availability
X items -
/‘\ 2 __/,/\ /
—— Order—= Process
\TEQ SR, \\\//
Invoice

Order Details

Order

Figure 4.2: A Level 0 Data flow diagram for the same system

Level 1

This level is a decomposition of a process shown in a level 0 diagrams, as such there should be a level 1
diagram for each and every process shown in a level O diagram. In this example processes 1.1, 1.2 & 1.3
are all children of process 1, together they wholly and completely describe process 1, and combined

M.S. University - D.D.CE. Software Requirement Analysis and Specifications 73

must perform the full capacity of this parent process. As before, a level 1 diagram must be balanced
with its parent level 0 diagram.

AR

-<— Enquiry— Process

Enguiry

"
Item
Information
e
|
Customers Ttem
B Store D1 Store
4
Customer Item details /
Details availability
\
/
\ ﬁ Items
e Y b N
& a7
rocess
Customer
Order e W
g "
Invoice o

Order Details

Figure 4.3: A Level 1 Data flow diagram showing the "Process Enquiry" process for the same system
Data Flow Diagram Tools
* CA ERwin Data Modeler, a data modeling tool
¢ ConceptDraw, a Windows and Mac OS X data flow diagramming tool
* Dia, a free source diagramming tool with flowchart support
* Kivio, a free source diagramming tool for KDE

* Microsoft Visio, a Windows diagramming tool which includes very basic DFD support (Images
only, does not record data flows)

* SmartDraw, a Windows diagramming tool with Yourdon and Coad process notations and Gane
and Sarson process notation

* System Architect, an enterprise architecture tool, supporting Coad/Yourdon, Gane & Sarson,
Ward/Mellor, and SSADM notations and techniques

» DFDdeveloper, an open source software application that allows Microsoft Office users to create
interactive leveled data flow diagrams and data dictionaries

* Flow-based programming diagramming tool (DrawFBP), developed by J. Paul Morrison.

74 Software Engineering M.S. University - D.D.C.E.

There are only five symbols that are used in the drawing of business process diagrams (data flow
diagrams). These are now explained, together with the rules that apply to them.

This diagram represents a banking process, which maintains customer accounts. In this example,
customers can withdraw or deposit cash, request information about their account or update their
account details. The five different symbols used in this example represent the full set of symbols
required to draw any business process diagram.

External Entity

An external entity is a source or destination of a data flow which is outside the area of study. Only
those entities which originate or receive data are represented on a business process diagram. The
symbol used is an oval containing a meaningful and unique identifier.

Process

A process shows a transformation or manipulation of data flows within the system. The symbol used
is a rectangular box which contains 3 descriptive elements:

Firstly an identification number appears in the upper left hand corner. This is allocated arbitrarily at
the top level and serves as a unique reference.

Secondly, a location appears to the right of the identifier and describes where in the system the process
takes place. This may, for example, be a department or a piece of hardware. Finally, a descriptive title
is placed in the centre of the box. This should be a simple imperative sentence with a specific verb, for
example 'maintain customer records' or 'find driver'.

M.S. University - D.D.C.E. Software Requirement Analysis and Specifications 75

Data Flow

A data flow shows the flow of information from its source to its destination. A data flow is
represented by a line, with arrowheads showing the direction of flow. Information always flows to or
from a process and may be written, verbal or electronic. Each data flow may be referenced by the
processes or data stores at its head and tail, or by a description of its contents.

Data Store

A data store is a holding place for information within the system:
It is represented by an open ended narrow rectangle.

Data stores may be long-term files such as sales ledgers, or may be shortterm accumulations: for
example batches of documents that are waiting to be processed. Each data store should be given a
reference followed by an arbitrary number.

Resource Flow

A resource flow shows the flow of any physical material from its source to its destination. For this
reason they are sometimes referred to as physical flows.

The physical material in question should be given a meaningful name. Resource flows are usually
restricted to early, high-level diagrams and are used when a description of the physical flow of
materials is considered to be important to help the analysis. ;

Data Flow Diagrams - The Rules

1. External Entities: It is normal for all the information represented within a system to have been
obtained from, and/or to be passed onto, an external source or recipient. These external entities
may be duplicated on a diagram, to avoid crossing data flow lines. Where they are duplicated a
stripe is drawn across the left hand corner, like this.

The addition of a lowercase letter to each entity on the diagram is a good way to uniquely identify
them.

2. Processes: When naming processes, avoid glossing over them, without really understanding their
role. Indications that this has been done are the use of vague terms in the descriptive title area -
like 'process' or "update'.

The most important thing to remember is that the description must be meaningful to whoever
will be using the diagram.

76 Software Engineering M.S. University - D.D.C.E.

Data Flous: Double headed arrows can be used (to show two-way flows) on all but bottom level
diagrams. Furthermore, in common with most of the other symbols used, a data flow at a
particular level of a diagram may be decomposed to multiple data flows at lower levels.

Data Stores: Each store should be given a reference letter, followed by an arbitrary number. These
reference letters are allocated as follows:

'D' - indicates a permanent computer file
'M' - indicates a manual file
"T" - indicates a transient store, one that is deleted after processing.

In order to avoid complex flows, the same data store may be drawn several times on a diagram.

Multiple instances of the same data store are indicated by a double vertical bar on their left hand
edge.

Data Flow Diagrams - Relationship Grid

“External Entity

Process

Data Store

There are rules governing various aspects of the diagram components and how they can relate to one
another.

1

Data Flous: For data flows the rules are as follows:

Data flows and resource flows are allowed between external entities and processes. Data flows are
also allowed between different external entities. However, data flows and resource flows are not
allowed between external entities and data stores.

Processes: For processes the data flow rules are as follows:

Data flows and resource flows are allowed between processes and external entities and between
processes and data stores. They are also allowed between different processes. In other words
processes can communicate with all other areas of the business process diagram.

Data Stores: For data stores the data flow rules are as follows:

Data flows and resource flows are allowed between data stores and processes. However, these
flows are not allowed between data stores and external entities or between one data store and
another. In practice this means that data stores cannot initiate a communication of information,
they require a process to do this.

Data Flow Diagrams - Context Diagrams

The context diagram represents the entire system under investigation. This diagram should be drawn
first, and used to clarify and agree the scope of the investigation.

